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ABSTRACT

African waves are believed to originate as shear instabilities, although in certain cases rainfall is organized so
that latent heating contributes to wave growth. What determines whether the shear instability can organize
rainfall is considered here; in particular, why African waves organize rainfall mainly during the late summer,
despite the regular occurrence of shear instability and rainfall throughout the season.

During GATE, moisture convergence by the waves was also largest toward the late summer. It is assumed
that an African wave will organize rainfall if it converges moisture—as measured by the ascent at the top of the
moist layer—with sufficient amplitude. The wave amplitude is specified at some level beneath the 600-mb
African jet, whose instability is a plausible source of the wave. The ascent is calculated using the quasigeostrophic
potential vorticity and thermodynamic equations, and depends on the zonal wind separating the unstable jet
from the top of the moist layer.

Before turning to the example of the African jet, the more general behavior of the model is considered. In
the absence of shear, a wave can arrive at the moist layer with undiminished amplitude. However, the ascent
corresponding to this wave is small—less than the estimated ascent for Phase I of GATE when rainfall remained
unorganized. For larger values of the shear, this threshold can be exceeded, although the ascent decays beneath
the jet. Thus, the question arises whether a wave source can organize rainfall from an arbitrarily large distance
above the moist layer. It is suggested that organization can only occur if the unstable jet is within a few kilometers
of the moist layer and separated by large shear, although exceptions are noted.

The calculation is applied to a wind profile resembling the observed 600-mb African jet. The wave amplitude
decays beneath the jet so that the ascent at the top of the moist layer increases as the separation of the jet and
moist layer decreases. Evidence is presented that the waves are closer to the moist layer during the late summer,
resulting in larger ascent at this time.

Large variations in the ascent can also occur even if the separation of the jet and moist layer remains constant.
It is shown that the ascent can vary greatly as a result of small changes in the jet that are within its observed
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summer variability.

1. Introduction

The organization of rainfall by African waves has
led modelers to consider whether such waves could be
driven by latent heat release, resulting in a class of
models referred to as wave-CISK. However, as noted
by Stevens and Lindzen (1978), among many others,
wave-CISK models lack a preferred horizontal scale.
The horizontal scale of the observed waves is not re-
garded as particularly mysterious. African waves orig-
inate in Central and East Africa (e.g., Carlson 1969b;
Burpee 1972; Albignat and Reed 1980), upstream of
the region where rainfall is organized (Carlson 1969a),
and appear first within an easterly jet that was shown
by Burpee (1972) to be unstable. The shear instabilities
associated with the jet have horizontal scales compa-
rable to those of the observed waves (Rennick 1976;
Simmons 1977; Mass 1979; Kwon 1989). Thus, Af-
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rican waves apparently originate as shear instabilities,
while organized latent heating can contribute to wave
growth as the waves approach the buoyant monsoonal
air near the West African coast (Mass 1979).

This was observed during Phase III of the GARP
Atlantic Tropical Experiment (GATE) in late summer
1974. Rainfall near the West African coast was con-
sistently organized by African waves so that enhanced
precipitation coincided with the passage of the wave
trough. However, African waves do not always organize
rainfall. During Phase I, two months earlier, there was
no consistent relationship between rainfall and wave
passage (Reeves et al. 1979). While precipitation rates
were comparable for the two phases (Woodley et al.
1983), during Phase I rain was as likely to fall over the
wave ridge as over the trough.

In this study, we consider what determines whether
African waves organize rainfall and, in particular, why
rainfall remained unorganized during Phase 1 of GATE.
Chen and Ogura (1982) show that while African waves
were present within the 600-mb easterly jet during each
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observing phase of GATE, surface convergence was
barely disturbed by the waves during Phase I, in con-
trast to Phase III. We will assume that African waves
originate as shear instabilities of the 600-mb jet (here-
after referred to as the African jet), as is suggested by
the observational analyses of Burpee (1972) and Nor-
quist et al. (1977). We hypothesize that an African
wave can organize rainfall if the shear instability is able
to penetrate beneath the jet and converge sufficient
amounts of moisture. We will consider what prevented
African waves from penetrating into the moist layer
with sufficient amplitude during Phase I.

The correlation between moisture convergence and
rainfall is well documented for African waves
(Thompson et al. 1979; Chen and Ogura 1982). Our
assumption that moisture convergence causes deep
convection and rainfall is also shared by the African
wave models of Rennick (1976), Mass (1979), and
Kwon (1989). We will assume that only moisture be-
neath approximately 800 mb can contribute to rainfall.
This is roughly the depth of the moist, conditionally
unstable, monsoonal air that flows over West Africa
where African waves are first observed to organize
rainfall (Carlson 1969a). Consequently, the total con-
vergence of moisture is proportional to the ascent at
the top of the layer.

Traditionally, the ascent associated with a shear in-
stability has been estimated by means of linear stability
analysis (e.g., Rennick 1976; Simmons 1977; Mass
1979; Kwon 1989). However, below the jet, unstable
normal modes are associated with neutral waves prop-
agating across the shear (cf. appendix A). We will re-
gard the unstable jet as a wave source and specify the
amplitude of the wave just beneath the jet, using the
potential vorticity equation to compute its amplitude
below (cf. Fig. 1). The extent of penetration will thus
depend on the index of refraction and, in particular,
the zonal wind in the layer separating the African jet
from.the moist layer. Our model is described in more
detail in section 2. Our use of the potential vorticity
equation resembles that of Charney and Drazin (1961),
although we are interested in the ascent induced by
the wave rather than the geopotential amplitude.

Before turning to the example of African waves, we
examine the more general behavior of our model in
section 3. In particular, we will consider which zonal-
wind profiles allow a wave source to induce the largest
ascent below and whether there is any maximum depth
beyond which a wave source is incapable of organizing
rainfall.

In section 4, we consider whether differences in the
winds beneath the African jet might have reduced as-
cent and total converged moisture during Phase I in
comparison to Phase III. We will consider a zonal-wind
profile resembling the jet and show that small devia-
tions from this profile within the observed summer
variability could cause relatively large changes in the
induced ascent. In addition, we will present evidence

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 16

Critical Surface
—_ / of the Unstable Wave
———
> N\

/
{ JetMax \
®

L,

shallow, non-precip.

convection
Computational

Domain 297 /
BB =
layer

FIG. 1. A schematic view of a jet perched above a potentially buoy-
ant moist layer. In the model, the amplitude, phase speed, and hor-
izontal wavenumber of the unstable wave are specified at zr, and the
ascent induced by the wave below is computed as a function of the
zonal wind at each height. Of particular interest is the ascent induced
at z,, the top of the moist layer. Here z7 is chosen to be just below
2.5, the lowest extent of the critical surface. In the example of African
waves, the jet is centered near 600 mb, and the top of the moist layer
is near 800 mb.
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that variations in the jet allow larger ascent during late
summer, when rainfall was most consistently orga-
nized. Finally, in section 5, we summarize our results.
How much moisture must be converged by a shear
instability in order to organize rainfall remains to be
determined. As a result of the converged moisture, la-
tent heating will force a circulation with the same hor-
izontal scale. This circulation has been modeled by
Stevens and Lindzen (1978), who found that the con-
vergence forced by latent heating is in phase and equal
in amplitude to the original convergence. That is, the
convergence forced by shear instability and latent
heating reinforce each other, allowing latent heating to
contribute to wave growth, as was observed during
Phase III (Norquist et al. 1977). In principle, it seems
that any nonzero amount of convergence resulting
from the shear instability could lead to reinforcement
and the eventual organization of rainfall. In practice,
the situation is more complicated. For example, rainfall
remained unorganized during Phase I, despite the
presence of nonzero, albeit small, convergence due to
the shear instability. Apparently, some threshold must
be exceeded. We will return to this point in section 4.
Whatever its precise value, the existence of a threshold
makes it useful to consider what determines the amount
of convergence within the moist layer that is induced
by a disturbance originating within the unstable jet.

2. Model description

Our model is summarized in Figs. 1 and 2. We as-
sume that as a result of shear instability, a wave with
phase speed ¢ and zonal wavenumber k propagates
downward, away from the unstable jet. We specify the
amplitude of this wave at z, the top of our compu-
tational domain, corresponding to a level just beneath
the jet (cf. Fig. 1), and calculate the wave amplitude
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FIG. 2. A schematic view of the model.

below zy, using the quasigeostrophic potential vorticity
equation

. 62 f2 aZ
—_— +.—.—-— 2 =
aych N2622¢+#(y,Z)Q 0, (1)
where
= 2
2 (9 _ K2}~ S
# (U— c ) 4N?H3’ (2)

and the perturbation has been written in normal-mode
form:

Q(x: y9 29 t) = ‘I’(J’, Z)eik(x_a)e(z“zT)/ZHo.

Beneath the jet, the meridional shear is relatively small
and p? is mainly a function of height. (We will discuss
this approximation in more detail.) Then, ®(y, z) can
be written as ®(z) sinly and (1) becomes the wave
equation:

2
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9z° (3)
with an index of refraction that depends only on height:
N[ ¢ 1
2Dy g2 p) o
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Given the geopotential at each level below the jet,
we can use the thermodynamic equation to calculate
the associated ascent:

(5)

At zp, the bottom of our computational domain, we
impose the radiation condition so that the solution
represents either a wave with downward group velocity

U-c
2H,

)cp — (0~ c)@z]e“—zﬂ/“’o.

! Synopticians customarily evaluate w using the Omega equation.
However, for geopotential fields that are a solution to (3), the ther-
modynamic and omega equations give identical values of w (e.g.,
Holton 1979).
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or a downwardly decaying exponental. Our use of the
radiation condition is intended to mimic the effects of
dissipation near the surface, which acts to damp the
downgoing solution and limit reflection. Presumably,
this damping is overestimated by the radiation con-
dition, which assumes that the wave excited above zr
is completely absorbed beneath zz. At the other ex-
treme is the kinematic condition (i.e., w is set equal to
zero), where the surface acts as a perfect reflector. It
is unclear which condition more accurately describes
the degree of reflection. Although we have chosen to
implement the radiation condition, we will consider
the sensitivity of our conclusions to this choice in sec-
tion 4.

The model requires that phase speed and horizontal
structure of the instability be specified at the top of the
computational domain. That is, we implicitly assume
that these parameters are determined within the jet
and above the computational domain, Calculations by
Shukla (1979) and Goswami et al. (1981 ) suggest that
our assumption is valid to a good approximation. Both
studies considered the stability of the zonal winds over
the Bay of Bengal and demonstrated that the (complex)
phase speed ¢ and the horizontal structure were deter-
mined primarily by the properties of the unstable jet,
while the neighboring winds and boundary conditions
were of secondary importance. More recently, Kwon
(1989) has shown that this is also true for the African
jet, even though the structure of the unstable wave
along with the wave energetics may depend strongly
on the winds surrounding the jet.

This raises the question of precisely where z7, the
top of our computational domain, is to be located rel-
ative to the jet. By assumption, z7is beneath the region
of wave excitation, where the phase speed and hori-
zontal structure are determined. A wave overreflection
description of shear instability (e.g., Lindzen 1988) in-
dicates that this region is bounded approximately by
the critical surface where U = ¢,. Thus, in order to
study the penetration of waves beneath an easterly jet,
we should place z7, the top of our domain, at a height
where U — ¢, > 0. How far below the critical surface
zr should be placed is a matter of judgement since this
surface is only an approximate boundary. To be con-
servative, we could take U(zr) — ¢, to be large. How-
ever, the goal is to measure wave penetration beneath
the jet; therefore, to make U(zr) — ¢, too large is to
exclude part of the region of interest. In calculations
not presented, we found that for large enough values
of the shear—including those values observed beneath
the African jet—the solutions are relatively insensitive
to U(z7) — ¢, for values less than a few m s™!. Given
this insensitivity, we arbitrarily choose z; to be that
height where U(zr) — ¢, = 0.5 ms™".

Our goal is to calculate how the ascent induced by
a shear instability varies with the wind beneath the jet.
According to (4), the ascent also depends on ¢;, the
imaginary part of the phase speed. This is inconvenient
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since the computed asgent will vary not only with the
low-level winds, but also over the life cycle of the wave.
In order to remove this dependence on ¢;, we make
use of the result derived in appendix A that within our
domain the unstable normal mode is comprised of
wave packets. In the appendix A it is shown that the
individual packets propagate according to (3) but with
¢; set equal to zero. In this study, the ascent associated
with a wave packet rather than the normal mode is
computed, since in the former case, this ascent depends
only on the low-level wind. By computing the ascent
corresponding to a wave packet, we are not approxi-
mating African waves as neutral (or slowly growing).
In appendix A we show that while an individual packet
is neutral, the summation over all the (neutral) packets
that exist at any single instant can result in an-unstable
normal mode. Because the amplitude computed in this
study corresponds to the wave packet, this amplitude
and 1ts variation with height cannot be compared to
variations in the observed wave, since the latter cor-
responds to the superposition of all packets. An excep-
tion where such a comparison is approximately valid
is where ¢; is small, for example, over the GATE ship
array in the east Atlantic, where African waves are ob-
served to have equilibrated. ,

Derivation of a one-dimensional wave equation from
(1) requires that the index of refraction be a function
only of height: meridional variations of the index re-
sulting from the meridional shear beneath the jet are
assumed to be small. In section 4, we will justify this
neglect by scale analysis and by direct comparison of
the solutions to (1) and (3) for a wind profile resem-
bling the African jet. As a result of this approximation,
the meridional structure of the perturbation can be
written as ®(y, z) oc sinly. Such a perturbation has no
meridional tilt and extracts no energy from the unstable
jet. This may seem to contradict our assumption that
the perturbation origin is due to shear instability—in
particular due to a combination of baroclinic and
barotropic instability. However, while the perturbation
is assumed to have no tilt within our computational
domain beneath the jet, we assume that within the jet
(and thus above our domain) the perturbation has a
tilt allowing it to extract energy from the shear. This
picture is consistent with the meridional structure of
African waves observed during Phase III of GATE.
Reed et al. (1977) show that at 700 mb, near the jet
core, the perturbation streamlines are meridionally
tilted so that the wave grows at the expense of the jet.
However, such a tilt, along with the corresponding ex-
traction of energy, is absent at 850 mb. This latter
height is representative of the computational domain.

To pose our approximation quantitatively, we note
that the index of refraction may be treated as constant
in the meridional direction if the scale of variation for
the index is large compared to the meridional length
scale of the perturbation—that is, if
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In essence, our approximation is based on the method
of multiple scales (e.g., Joannou and Lindzen 1986)
for which (6) is 2 measure of the approximation’s va-
lidity. For now, we will assume that (6) is satisfied,
and defer quantitative estimate until section 4 when
we apply the results of our model to the African jet.

Finally, we consider the usefulness of the quasi-
geostrophic and B-plane approximations in describing
wave penetration beneath a jet at 15°N. Stevens (1979)
has shown that African waves are approximately con-
trolled by linear dynamics. Quasigeostrophy is a valid
approximation to the linearized equations if the Dopp-
ler-shifted wave frequency k( U — ¢) is small compared
to the Coriolis parameter. Consequently, in the vicinity
of the critical level where the difference U — ¢ is small,
the behavior of African waves is quasigeostrophic. To
estimate more precisely how small this difference must
be, we set k equal to 2 X 107 m™' and evaluate fat
15°N: the ratio [k(U — ¢)/f] is less than unity for U
— cless than 19 m s,

The validity of the 8-plane approximation requires
that (8/f1) be small or that / be much greater than 6
X 1077 m~!. For comparison, a typical value of / in
this study is 2 X 107® m™'. Alternatively, it is noted
that for this value of /, the ratio (8/f7) is less than
unity beyond roughly 4° of the equator.

(6)

3. The ascent induced by a wave source aloft

In the next section we will estimate the low-level
ascent induced by instabilities of the African jet. But
first, we consider a broader range of zonal-wind profiles,
not necessarily resembling the African jet, and examine
the more general behavior of the model-—considering,
for example, which zonal-wind profiles result in the
largest ascent and whether there is any distance beyond
which a wave source is incapable of organizing rainfail.

a. Constant U

For a zonal-wind profile without vertical shear, an-
alytic solutions exist that aid in the interpretation of
the solutions corresponding to more realistic basic
states.

In the absence of shear, the index of refraction be-
comes

N? 8 1
2 IV S 2 LA
m f2(U0—c k l) ik

The vertical scale #~! is large in regions of small static
stability. In addition, this scale is directly proportional
to the Coriolis parameter: vertically trapped distur-
bances in the tropics are confined to a narrower depth

than their midlatitude counterparts. In Fig. 3, m™' is

(7)
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F1G. 3. The vertical length scale m™ (in meters) as a function of
the meridional wavenumber { (X10®m™) and Uy — ¢ (in ms™).
The solid lines correspond to vertically trapped solutions (m? < 0),
where m™! equals the e-folding scale; the dotted lines correspond to
vertically propagating solutions (7 > 0), where m~! equals the ver-
tical wavelength divided by 27; and the dashed line depicts the vaiue
of Up — ¢ that maximizes |w| for the propagating solutions as a
function of /.

plotted as a function of Uy — ¢ and /. The other pa-
rameters required for this calculation are the zonal
wavenumber k, which is given the synoptic-scale value
of 2 X 107® m™! (corresponding to a zonal wavelength
of roughly 30° longitude), N?, which is set equal to
1.16 X 107* 572, and fand B8, which are evaluated at
15°N. (These values will be used throughout this
study.)

According to (7), propagation (m? > 0) occurs
within a range of U, — ¢ that is positive and small:

2

This is the result of Charney and Drazin (1961):
Rossby waves can propagate vertically if the zonal wind
is slightly more westerly than the wave phase speed.
For values of the parameters used in Fig. 3, vertical
propagation occurs for Uy — ¢ less than 2-3 m s™%,
The vertical velocity associated with the perturba-
tion can be calculated analytically in the absence of

shear. For downward-propagating solutions, where &
— q)oe—im(z-zr)’

0<Uo~c<ﬁ/(k2+lz+

lwl = 55 (Uo — c)yme==/280 g (9)
We are particularly interested in the maximum possible

ascent associated with vertically propagating solutions,
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which can be found by varying Uy — c¢. The maximum
[wi is

ezt gy, (10)

Bk
which occurs for

__ B
20k*+ 1)

The maximizing value of Uy — ¢ as a function of / is
denoted by the dashed line in Fig. 3.

By way of illustration we set / = 2 X 10~ ® m™! and
&, = 23.5 m? s 2. (The latter value corresponds to a
meridional wind of 1.25 m s™!, which is comparable
in magnitude to the shear instabilities beneath the Af-
rican jet.) The optimal |w]| given by (10) is found to
equal 0.17 mbh~'.

This raises the question of how much convergence
of moisture—or equivalently, how large a value of as-
cent at the top of the moist layer—is needed for a shear
instability to organize rainfall. The optimal value of
|w| is small in comparison to the 3-5 mb h™" ascent
characterizing tropical convection averaged over a
synoptic scale (e.g., Reed and Recker 1971; Thompson
et al. 1979).

In the next section, we will argue that the ascent
given by (10) is too small to organize rainfall beneath
the African jet, since it fails to exceed an empirical
threshold. However, under different circumstances, a
vertically propagating wave may organize rainfall. Due
to the linearity of (3) and (5), a wave source exciting
a perturbation with sufficiently large initial amplitude
would allow the threshold to be exceeded.

Restricting ourselves to perturbation amplitudes
comparable to African waves, we find that the ascent
associated with vertically propagating solutions is in-
sufficient to organize rainfall. In contrast, the ascent
associated with trapped solutions can exceed the afore-
mentioned threshold, given a sufficiently large value
of Uy — ¢:

Uo—'C

k 1
Il =5 (Uo = c)(n + ﬁ)elnﬂlﬂHo)](z—ZT)lq,ol’

where ® = ®3¢™*?7) and n? = —m?. The ascent cor-
responding to trapped solutions decreases exponentially
beneath the wave source. Consequently, we question
whether a wave insufficiently near the moist layer can
organize rainfall.

The inability of a vertically propagating solution to
organize rainfall distinguishes our calculation from that
of Charney and Drazin (1961). Charney and Drazin
considered whether a geopotential perturbation at one
level in the atmosphere could be transmitted to another
level with undiminished amplitude; for example,
whether tropospheric geopotential anomalies could be
transmitted into the stratosphere. According to (3), it
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is sufficient to determine whether the zonal wind allows
propagation between the two levels in question. In the
present study, we consider whether a geopotential per-
turbation at one level can induce large ascent at another
level, in particular at the top of the moist layer. In the
example of the African jet, we find that the ascent as-
sociated with vertical propagation is insufficient to or-
ganize rainfall. Only profiles corresponding to trapping
allow the threshold to be exceeded.

b. General U

Based on the previous calculation, we suggested that
only a wave source sufficiently near the moist layer
.could organize rainfall. We will demonstrate this using
more realistic wind profiles with vertical shear and cur-
vature. In addition, the maximum separation of the
wave source and moist layer for which the threshold
value can be exceeded will be estimated, and the wind
profiles that allow the perturbation to induce the largest
ascent will be identified.

Having turned to more realistic zonal-wind profiles,
we now have to decide exactly how we want U to vary.
Because it is impractical to solve (3) while varying U
according to every possible combination of shear, cur-
vature, and higher derivative, we cannot answer any
of the preceding questions definitively. The difficulty
lies in the fact that no convenient analytic solutions to
(3) exist for general U, so that the problem must be
approached numerically,

In the interest of establishing a practical limit to the
numerical calculations, we will consider zonal winds
with overall easterly shear and only linear or quadratic
dependence on height. In less specific terms, we will
restrict our examination of vertical transmission to
“smooth” profiles that might be found beneath an
easterly jet. The reason for considering quadratic pro-
files in addition to the linear case is that for the former,
the zonal wind can modify the index of refraction not
only through the value of U — ¢ as in the cases of
constant and no shear, but also through the meridional
gradient of mean potential vorticity g,.> The trans-
mission will be different for linear and quadratic wind
profiles because of this effect, even if each profile has
identical overall easterly shear.

Before considering more complicated profiles, it is
noted that because (3) and (5) are linear, the amplitude
of the ascent will depend on the amplitude of the
downgoing wave specified at the upper boundary. In
order to compare the ascent corresponding to different
profiles in a consistent fashion, it is necessary to identify
the upgoing and downgoing components of the per-
turbation at z; without resort to an approximation such

2 Strictly speaking, g, is modified by linear as well as quadratic
profiles. However, this modification is much smaller for the former,
given the range of shears we will consider.
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as WKB, whose validity will vary according to the pro-
file. As such, we invent a profile above z; and below
zp, the lower boundary, that satisfies
‘iy 2 2.

= =a%,a

- ¢ T B
where a% and a} are constants, chosen so that m? is
continuous at zy and zg. In addition, U and its first
two derivatives are continuous across these points. The
invented profile has the convenient property that m?
is constant. As such, the appropriate radiation condi-

‘tions can be imposed exactly at each boundary, without

relying on the validity of the WKB approximation.

c. Linear U

Given a linear wind profile, U = U, + U(z ~ z7),
(3) and (5) are solved numerically for the geopotential
height and the vertical velocity.

The geopotential is depicted in Fig. 4 as a function
of the shear parameter U, and the distance beneath
the wave source z — zy. The quantity Uy — ¢ is set
equal to 0.5 m s~! for the remainder of this study. We
have found that the trapped solutions in particular are
insensitive to this parameter, the main effect of its vari-
ation being to shift the height of the turning point. The
meridional wavenumber is set equal to 2 X 107 m™!,

Qualitative aspects of the geopotential solution can
be interpreted in terms of vertical propagation and
trapping using the WKB approximate solution to (3),
along with Fig. 3, which shows how the vertical wave-
number varies with respect to U — ¢. For small values
of the shear, (—0.5 ms™! km™! < U, < 0), the per-
turbation is simply a downward propagating wave,
since the index of refraction is positive at all heights
within our computational domain. For larger values
of shear, the downgoing wave encounters a turning
point above which a reflected wave returns to z7 and
below which the perturbation is a downward decaying
exponential.

One effect of the shear is to amplify the perturbation
near the turning point. The most noticeable example
occurs for | U, | slightly greater than 0.5 m s km™,
where the perturbation reaches an amplitude of 3.2
(normalized with respect to the amplitude of the
downgoing wave at zr) at 2 km below z7. For com-
parison, if the perturbation was the sum of an incident
and reflected wave in an environment without shear,
the magnitude of the perturbation would be at most
2. The effect of shear in this example is to amplify the
perturbation by a factor of roughly 11/.

This amplification resembles the Airy-function be-
havior of the WKB solution, which varies as (m?)™'/4
outside the neighborhood of the turning point. Thus,
as m? decreases toward this level, the wave amplitude
increases. The physical interpretation for such an in-
crease is that the vertical flux of wave action must re-
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z-2r (km)

Uy (ms4m ™)

FIG. 4. The amplitude of the geopotential (normalized by the geopotential of the downgoing
wave at z7) as a function of distance beneath the wave source at zr and the shear U;. Note the
expanded ordinate for —1 ms™' < U, < 0. The dashed line corresponds to the turning point
where the index of refraction passes through zero. zp = z; — 5 km.

main constant (e.g., Andrews et al. 1987). For solutions
to (3), the product of the wave action (equal to the
wave energy divided by the frequency ) and the vertical
group velocity is proportional to m.42, where A is the
wave amplitude. The constancy of this flux is equiva-
lent to the requirement that 4 oc (m?)~"/4.

For larger shears ({U;| > —2 ms™' km™), the
turning point occurs within a kilometer of the upper
boundary. These perturbations are trapped and have
significant amplitudes only within a few kilometers of
the wave source. For large values of U, the geopotential

approaches an asymptotic form nearly independent of
this parameter. This can be understood with reference
to the calculation in the absence of shear. For large
values of Uy — ¢, the e-folding scale becomes nearly
constant. Thus, for large values of U, (so that Uy — ¢
is large), the solution below the turning point is a
downward decaying exponential whose e-folding scale
is nearly independent of U.

The vertical velocity associated with the perturbation
is shown in Fig. 5 (®, has been set equal to 23.5
m? s72). The smallest ascent is associated with small

2-2y (km)

U, (mskm™)

FI1G. 5. Same as in Fig. 4 but showing the magnitude of the vertical velocity |w| in mb h™*.
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values of the shear permitting vertical propagation.
Based on empirical considerations, we suggest in sec-
tion 4 that rainfall can be organized only if the per-
turbation ascent exceeds a threshold of 0.7 mbh™'.
For the range of shear used to construct the figure, the
induced ascent exceeds the threshold only within 2 km
of the wave source and for values of the shear greater
in magnitude than roughly 2 m s™' km™'. Note that
according to (5), the ascent is proportional to the ver-
tical shear so that the ascent at any height can be made
arbitrarily large given sufficiently large shear. As such,
the maximum distance beneath z;, within which the
threshold is exceeded, depends on the largest shear we
are willing to regard as “realistic,” in addition to the
magnitude of the wave source.

d. Quadratic U

In the example of a linear profile, it was found that
the induced ascent falls below an empirical threshold
at distances greater than 2 km beneath the wave source.
A quadratic term will be added to U so that U = U,
+ Uz — z7) + Us(z — z7)?, and we will consider
whether the induced ascent is modified by the addition
of curvature. In particular, we will ask whether cur-
vature allows the ascent to exceed the threshold at a
greater distance from the wave source.

Figure 6 shows the largest value of |w| occurring
between z7 and zp, while the height at which it occurs
is given by Fig. 7. The horizontal axis in each figure
corresponds to

F

\

24

-10l./ 1

-5 -4 -3 -2 A 0
QU/8z (ms"km™)

FIG. 6. The maximum value of |{w| in mb h~! found between z,

and zp, as a function of the vertically averaged shear AU/Az, and
U,, the shear at the upper boundary: Az = z; — z3 = 2 km.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 16

Uy (msm™)
/

F
|

1 1 l L i L 1 [

-5 = 3 = =
A /8z (ms~'km™)

FiG. 7. The height at which the maximum
value of |w| in Fig. 6 is found.

O

O(zr) = U(zy) _ AU

Zr— Zp Az

the average shear between zy and zg, while U, the
shear at z7, is plotted along the vertical axis. The dashed
line in each figure corresponds to U, = AU/ Az. These
are profiles with no curvature so that along this line
the maximum value of |w| and the height at which it
occurs correspond to those in Fig. 5. Since the curvature
is equal to

regions of the figure below the dashed line correspond
to profiles with negative curvature, while the curvature
is positive above.

The presence of negative curvature allows larger val-
ues of win comparison to linear profiles with the same
average shear, according to Fig. 6. For example, while
the largest ascent found using a linear profile is 1.4
mb h™!, ascent up to twice this value is present below
the dashed line in the figure. This might have been
anticipated with reference to the thermodynamic
equation (5), where the ascent is proportional to the
vertical shear: profiles with curvature have local values
of the shear exceeding AU/ Az, the shear of the cor-
responding linear profile. For profiles with negative
curvature, the shear is largest at z7, near the maximum
of ®. Thus, the largest ascent in Fig. 6 is found for
profiles with negative curvature.

An additional effect of curvature is to modulate the
index of refraction through g,. This allows the possi-
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bility that propitious values of curvature can minimize
the decrease of the ascent beneath zy by maintaining
a generally positive index of refraction despite the in-
crease of U — ¢ beyond the range given by (8). In Fig.
8, the largest ascent at 2 km beneath z7 is for values
of U, and AU/ Az where m?(zg) is positive (Fig. 9).
However, it is noted that according to (5), large ascent
far below the wave source depends not only on ® pre-
serving its amplitude—requiring a positive and slowly
varying index of refraction—but on U,, or U — ¢, being
large as well. Apparently, the largest ascent in Fig. 8
corresponds to combinations of shear and curvature
that most nearly allow both of these constraints to be
satisfied given the quadratic form of U.

That certain vatues of negative curvature minimize
the perturbation decay below zr suggests that the ad-
dition of curvature can extend the distance beneath
the wave source within which the induced ascent ex-
ceeds the threshold value. One can show by direct cal-
culation that the threshold of 0.7 mb h™! can be ex-
ceeded at up to 312 km beneath the wave source, for
roughly the same values of AU/ Az and U, correspond-
ing to the largest ascent in Fig. 8.

e. Summary

We have found that perturbations in the presence
of shear and curvature can induce significantly larger
ascent than if U — ¢ were to lie within a small range
described by (8), the Charney-Drazin inequality,
wherein vertical propagation is allowed. To be sure,
this statement depends on the height beneath the wave

i
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FIiG. 8. The value of {w| in mb h™" at zg, 2 km beneath the wave

source, as a function of the vertically averaged shear AU/ Az, and
U,, the shear at the upper boundary.
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FIG. 9. The index of refraction (X10%)
at zgfor Az = zp — zp = 2 km.

source at which one measures ascent. While a wind
profile with shear and curvature allows substantially
greater ascent to be induced near the source, this ascent
decays with height in comparison to profiles satisfying
(8), where the magnitude of the ascent is constant.
Thus, far enough from the wave source, the largest
ascent occurs when U satisfies (8).

We have shown how the ascent in the case of weak
shear is substantially less than the empirical threshold
required for the organization of rainfall. However, this
result depends on the strength of the wave source con-
sidered; hence, perturbations with amplitudes at zy
much larger than African waves can organize rainfall
despite the weak shear. Otherwise, we have questioned
whether a wave source can organize rainfall unless it
is within a few kilometers of the moist layer and sep-
arated by sufficiently large shear. In addition to the
amplitude of the wave source, this distance depends
on the range of shear considered.

One might further question the universality of this
distance since it is an estimate based on only three
classes of wind profiles, namely, U equal to constant,
linear, and quadratic functions of height. One non-
polynomial profile that might reasonably be expected
to allow large ascent far from the wave source is sug-
gested by a two-layer fluid where the zonal wind is
discontinuous across the interface. In the lower layer,
let U — ¢ be constant and large so that near the top of
this layer the ascent is large as well. In the upper layer,
U — cis small enough so that propagation is allowed.
Thus, one could imagine a wave source perched arbi-
trarily high within the upper layer, which despite its
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distance from the interface induces large ascent in the
lower layer,

However, the occurrence of such a configuration in
the atmosphere is questionable. Clearly, the disconti-
nuity in the zonal wind is unrealistic per se. Such a
change in U must take place over a finite depth, which
furthermore must be deep enough that the Richardson
number remains everywhere greater than one-quarter.
That the Richardson number constraint effectively
precludes large ascent beneath the shear region, con-
trary to the implications of the two-layer model, is
shown by Miller (1990).

The empirical approach of this study is inherently
undefinitive. Nonetheless, it is our experience, based
on low-order polynomials in addition to the nonpoly-
nomial wind profiles described more fully in Miller
(1990), that the results presented here are robust;
namely, a wave source comparable in magnitude to
the African jet can organize rainfall only if it is within
a few kilometers of the moist layer.

4. Application to African Waves

While the rates of precipitation were comparable
between Phases I and II1 of GATE (Woodley et al.
1980), rainfall was less frequently organized by African
waves during Phase I in July of 1974. Sadler (1975)
analyzed six years of satellite images and surface wind
observations, finding that rainfall was most frequently
organized in the late summer during these years as well.
Observations of the jet-level winds were unavailable to
Sadler, so it is unclear whether African waves were
present during the entire season. However, Burpee
(1972) analyzed upper-level wind observations over a
different eight year period and found that wave am-
plitudes were comparable between the early and late
summer. This suggests that the behavior observed dur-
ing GATE is typical of other years: despite the occur-
rence of African waves and rainfall throughout the en-
tire summer, rainfall is most frequently organized by
the waves late in the season. .

We assume that an African wave can organize rain-
fall if it is able to penetrate beneath the jet and converge
sufficient amounts of moisture. During Phase 11, sur-
face convergence increased in phase with passage of
the wave trough. In contrast, this field was barely dis-
turbed during Phase I, despite the regular passage of
African waves overhead (Chen and Ogura 1982). We
will apply the model described in previous sections to
estimate whether changes in the zonal wind beneath
the jet might result in greater convergence toward late
summer, and during Phase III in particular.

Ideally, we would have observations of the zonal
wind just upstream of the region where rainfall is first
organized by the waves. Carlson (1969a) notes that
organization first occurs near the prime meridian. Un-
fortunately, this region is not well sampled by the
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GATE observing network. And measurements during
Phase 111 over the ship array near 22°W indicate that
the jet is 30% weaker than its zonal average across the
entire GATE network (Chen and Ogura 1982; Reed
et al. 1977). This suggests that there are significant
zonal variations in the jet and that winds near the prime
meridian may not be reliably estimated by downstream
observations.

As an alternative, we will estimate the winds that
exist in this region by referring to observations from
other years. Wind observations at 5°E have been av-
eraged by Burpee (1972) for eight successive months
of August, while Mass (1979) repeated the analysis for
the last week in August 1963. We will regard these
analyses as representative of late-summer winds. We
find that the induced ascent can be greatly altered by
deviations from the profiles of Burpee and Mass that
are within the observed summer variability, demon-
strating that the convergence of moisture might vary
greatly over the course of the summer.

We will suggest that variations in the observed zonal
wind lead to increased convergence toward the late
summer when rainfall is most frequently organized.
However, the vertical resolution of the existing wind
observations is probably insufficient to demonstrate this
directly. The data available to Burpee and Mass consist
of measurements at only the standard levels. That is,
the winds beneath the African jet are characterized by
observations at 700 mb, 850 mb, and the surface, so
that the vertical shear and curvature—even the max-
imum intensity and height of the jet—are presumably
not given with much accuracy. Evidence does exist,
however, that the shear instabilities are closer to the
moist layer during late summer: we will explain how
this can result in greater convergence of moisture ac-
cording to our model.

a. The transmission model applied to the African jet

Application of the model requires that we specify
the level beneath the African jet corresponding to zr,
the top of our computational domain, along with the
amplitude and horizontal structure of the shear insta-
bility at this height, and the zonal wind below.

The zonal wavenumber k is set equal to 2
X 107 m~!, corresponding to a zonal wavelength of
roughly 30° of longitude. This is within the range de-
rived by synoptic and spectral analyses (e.g., Burpee
1972; Reed et al. 1977), and because our conclusions
are not sensitive to this parameter we will not attempt
to extract a more precise value from the observations.

As in the previous section, we will assume that the
two-dimensional index of refraction p* [cf.,, Eq. (1)]
is approximately independent of latitude; therefore, we
may express the meridional dependence of an African
wave as ®(p, z) oc sinly. We can judge the validity of
our approximation by computing u? for a profile re-
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sembling the African jet and estimate the ratio in (6).
Let

277(2-20)
Az (D

where the quantities Up, Ay, Az, and z, are chosen so
that the function U has horizontal and vertical shear
and curvature comparable to observed values. In par-
ticular, we choose Uy = —16 m s™!, Ay = 6.4° latitude,
Az = 8 km, and zy = 4 km. The computed index is
shown in Fig. 10. Note that u? changes rapidly with
respect to latitude at the level of the jet, as required for
barotropic instability (Lindzen and Tung 1978), and
that the index of refraction is discontinuous at the crit-
ical surface. In contrast, the latitudinal variation of u?
beneath the jet is smaller. Our approximation of the
African waves’ latitudinal structure will be valid to the
extent that this variation is small over the assumed
meridional wavelength.

We take / = 2 X 107 m™, consistent with the ob-
served meridional scale of African waves according to
Reed et al. (1977). For comparison, one can estimate
the scale of variation for the index of refraction and
compute the ratio (6). At 500 m beneath the lower
critical surface (corresponding to z = 1.5 km in Fig.
10), p~'du/dy is approximately 1 X 107 m™' near
the central latitude of the jet while decreasing toward
the wings. While this is not vanishing in comparison
to /, it is nonetheless smaller, suggesting that vertical,
rather than meridional, variations in the index of re-
fraction are most fundamental to the convergence of
moisture beneath the African jet. We will find by direct

U = U, sech? 2 cos
Ay

z (km) 2

A
-10 -5 0
°/otitude

-15

FIG. 10. The index of refraction (X10¢) for the jet described in
the text. The index at heights above 4 km and at latitudes north of
the jet can be constructed by symmetry. The dashed line represents
the critical level where m? is singular. (Contours are not depicted for
jm?) >2X107%m™2)
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calculation that the solutions to (1) and (3) are not
greatly different.

Next, z7, the top of our computational domain, is
assigned to an actual height in the atmosphere. As in
the previous sections, we choose zr to be that height
where U — ¢ equals 0.5 m s~*, noting that the model
solutions are relatively insensitive to this value for
shears as large as those observed beneath the African
jet. This corresponds to a height of roughly 800 mb
during Phase III of GATE (Reed et al. 1977) near the
top of the moist layer. We will argue below that zr was
possibly 100 mb higher during Phase 1. Because of the
large shear beneath the jet, zy is within 10 mb of z
(cf. Fig. 1), and for the purposes of this study, we will
regard z and z,; as coincident.

At this level, the amplitude of the downgoing wave
is chosen to correspond to a meridional wind of 1.25
m s~ !. The shear beneath the jet is large enough that
the downgoing wave will encounter either an internal
turning point or an abrupt change in the index of re-
fraction, resulting in a reflected wave. As such, the me-
ridional wind at z; corresponding to the total pertur-
bation will be somewhat less than 2.5 ms™!. While
this is comparable to the observed meridional wind at
this height (Reed et al. 1977), based upon measure-
ments during Phase Il of GATE, it is noted that the
amplitude of the downgoing wave in our calculation
corresponds to an individual wave packet and not to
the entire normal mode (which presumably is more
closely related to the observed wave). According to
appendix A, the amplitude of the wave packet is de-
termined by the amplitude of the instability within the
jet at the time the packet leaves the jet. Thus, while
the advantage of a packet description of an, African
wave is that the ascent is independent of ¢;—which
varies over the life cycle of a wave—the disadvantage
is that the packet ascent depends on the amplitude of
the instability, which also varies along the wave’s tra-
jectory. Fortunately, this is not inconvenient so long
as our conclusions can be phrased independently of
the assumed initial packet amplitude. The value of the
aforementioned wave amplitude will be used only for
the sake of illustration.

The vertical shear and curvature beneath the African
Jet remain to be determined. In addition, we have to
account for the contribution of U,, to g,. As noted
above, while Uis in fact a function of latitude, changes
in the index of refraction are small over the meridional
scale of the wave, and we make the approximation of
assigning to U,, a single, representative value. Because
the African jet is easterly, U,, is positive and diminishes
dy, although the diminution decreases as U decreases
beneath the jet. In appendix B, evidence is presented
that g, is positive beneath the lower critical surface and
zr, despite the negative contribution of U,,. The precise
diminution of g, by U,, remains uncertain. For the
moment, we will assume that U,, is negligible com-
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pared to 3. When we turn to the full potential vorticity
equation (1), we will consider how a more realistic
value of U,, affects the solution.

Finally, we estimate the vertical shear and curvature
beneath the African jet. The analysis of Burpee (1972)
suggests an overall shear of —10 to ~15 m s™! over
31y km. Mass (1979) questioned whether averaging
over such an extended period of time might result in
a smoother jet than is actually presented to the devel-
oping wave. He repeated Burpee’s analysis for the last
week of August 1963 and found the change in U be-
tween the jet maximum and the surface within the
range of —15 to —20 m s~'. [ This estimate of the av-
erage shear includes the contribution from the low-
level westerly flow that Mass omitted from his Fig. 4
flow shown by Sadler (1975) to be a consistent feature
throughout the summer.] From these analyses, it ap-
pears that — AU/ Az is equal to 4-5 m s~' km™'. This
range may underestimate the shear in certain instances;
Carlson (1969a) has noted that the overall shear can
be as large as 40-50 kt over 3 km, corresponding to
AU/ Az as large as —8.6 m s km™!. Carlson did not
mention how common or long lived such large shears
were, however, or whether they included a contribution
from the wave.

The curvature is harder to estimate, given the lack
of vertical resolution in climatic datasets. According
to Burpee and Mass, the shear is largest near the lower
critical surface—probably no larger than twice the
overall shear—so that the curvature is negative beneath
this height. The existence of negative curvature is con-
sistent with the analysis of Reed et al. (1977), who

0

J-¢ (ms™)

FIG. 11. Four zonal-wind profiles resembling the African jet. For
curve 4, AU/Az = —4 m s~ km™ and U, = 1.5AU/Az; curve B,
AU/Az = -4 m s~ km™ and U, = 2.0AU/Az; curve C, AU/ Az
= -5 ms'km™ and U, = 1.5AU/Az; and curve D, AU/Az
=-5ms~' km™and U, = 2.0AU/Az. Az = 2 km.
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FiG. 12. The ascent in mb h™! corresponding
to the four profiles in Fig. 11.

show that during Phase III of GATE the meridional
temperature gradient was largest near 800 mb.

b. Results

Four zonal-wind profiles within the range of shear
and curvature discussed in subsection 4a are shown in
Fig. 11. While differences between the profiles might
be hard to measure, the corresponding ascent and geo-
potential fields, depicted in Figs. 12 and 13, respec-
tively, are easily distinguished. In comparison to the
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FIG. 13. The geopotential (normalized by the amplitude of the
downgoing wave at zr) corresponding to the four profiles in Fig. !1.
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ascent associated with profile A, for example, the ascent
corresponding to profile D is one and a half times larger
near zr, but only half as large at 2 km below z. Note
that for profiles B and D, the decay scale for the geo-
potential differs from that of the ascent. This resembles
a feature of African waves found by Chen and Ogura
(1982) for Phase I of GATE; namely, the wave vorticity
(proportional to the geopotential for quasigeostrophic
perturbations) was virtually undiminished between the
jetlevel and the surface, while the surface convergence
(related to the vertical velocity) remained relatively
unorganized by the wave. Incidentally, the index of
refraction for profile B (Fig. 14) is positive over the
entire 2-km depth, despite the changein Uby 8 m s™*.
This demonstrates that propagation can occur even if
U — ¢ does not remain within the small westerly range
given by (8), so long as the effect of curvature is to
maintain a positive index of refraction.

Differences between the profiles in Fig. 11 are within
the range of observations of the African jet (e.g., Burpee
1972; Reed et al. 1977; Chen and Ogura 1982). We
regard this range as a conservative measure of the jet’s
variability over the course of the summer. As such,
summertime variations in the induced ascent and the
waves’ ability to organize rainfall are potentially as
large as substantial variations in the ascent shown in
Fig. 12.

Whether these variations would result in larger as-
cent during the late summer—and Phase III in partic-
ular—when rainfall is most frequently organized, is
harder to demonstrate given the dearth of suitable wind
observations. Chen and Ogura (1982) show that Af-
rican waves (whose height we take to be indicated by
the vorticity maximum) are roughly 100 mb higher
during Phase I of GATE in early July in comparison
to Phase II1 in early September (their Figs. 24 and 25).
This is significant insofar as the ascent corresponding
to each of the wind profiles depicted in Fig, 11 ulti-
mately decays in amplitude away from the jet. Con-
sequently, the ascent induced at the top of the moist
layer would increase toward the late summer, when
the waves are closer to this region. Unfortunately, the
analyses of Chen and Ogura may not be completely
relevant to our model, since as noted in subsection 4a,
they are based on observations taken some 20° of lon-
gitude downstream of where the waves first organize
rainfall. Thus, by the time African waves reach the
ship array, the original shear instability may have been
obscured by the circulation forced by organized latent
heating, at least during Phase III. Nonetheless, it is not
unreasonable that the unstable waves might originate
at a higher level during the midsummer, for example
during Phase L. This is the time of year when the surface
thermal gradient responsible for the African jet might
be expected to have penetrated farthest into the tro-
posphere. According to the thermal wind relation, the
jet maximum occurs at the height where the thermal
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contrast falls to zero. Thus, the unstable waves would
be perched at their greatest elevation during midsum-
mer. This is further corroborated, albeit indirectly, by
the midsummer decrease in wave amplitude at 700
mb, found by Burpee (1972). While one interpretation
is that the waves are weakest during this time, this seems
surprising since the African jet might be expected to
be most unstable during the midsummer when the sur-
face thermal gradient is strongest. An alternative ex-
planation is that the shear instability remains of un-
diminished amplitude, but is farthest above the moist
layer during the midsummer. Due to the trapped nature
of the solutions, the wave amplitude at any fixed level
beneath the jet decreases as the separation of the un-
stable wave from that level increases. Were the winds
beneath the African jet to resemble profiles A and C,
then elevating the jet by as little as 100 mb could ac-
count for the decrease in wave amplitude measured by
Burpee. While not entirely definitive, the analyses of
Chen and Ogura (1982 ) and Burpee (1972), along with
our heuristic argument that the African jet should be
higher during the midsummer, suggest that the induced
ascent might be larger toward late summer, when rain-
fall is most frequently organized. Incidentally, our in-
terpretation of the midsummer amplitude decrease
found by Burpee illustrates that it may be misleading
to measure wave amplitude as a function of time based
on observations at a single level. This is particularly
true for tropical disturbances where the trapping scale
is small in comparison to midlatitudes.

The radiation condition has been used in the cal-
culations presented up until now. We repeated the cal-
culations leading to Figs. 11-14, this time setting w
equal to zero at zg (zp again equals zr — 2 km). As in
Fig. 12, the ascent was again found to be sensitive to
small changes in U. The ascent decayed beneath zg:
in fact, the degree of trapping was greater than in Fig.
12, since w was necessarily zero at zg, while w at zy
was largely unchanged by the new lower boundary
condition. As discussed in section 2, our use of the
radiation condition is intended to model the effects of
dissipation near the surface. While it probably over-
estimates wave absorption, we note that use of the ki-
nematic boundary condition (equivalent to no ab-
sorption ) results in nearly identical behavior of the in-
duced ascent.

Another approximation made in constructing Figs.
11-14 was the neglect of meridional variations in the
index of refraction, u? [cf. Eq. (1)]. To assess this
approximation, we solved the full potential vorticity
equation ( 1) to see to what extent the sensitivity of our
solutions to the low-level wind was altered. The cal-
culation was done using a S-plane centered at 15°N
with channel boundaries at 0° and 30°N. As in the
one-dimensional case, we imagined a downgoing wave
propagating through the underside of the jet in the di-
rection of the moist layer, and computed the wave am-
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FIG. 14. The index of refraction (X107) corresponding to the four

profiles in Fig. 11. Within 400 m of z7, the index rises sharply, en-
countering a singularity at the critical level.

plitude at each height as a function of U. The amplitude
of the downgoing wave was chosen so that [;" ®*(y,
z7)dy would be equal to the corresponding integral in
the one-dimensional case: [ " ®2(zr) sin2lydy. At
the lower boundary, either the radiation or kinematic
condition was imposed. As before, the solutions were
found not to depend greatly on this choice.

The vertical dependence of U was taken to be a qua-
dratic function of height, as before. However, unlike
the previous calculation, U also varied with latitude in
proportion to sech?(y/Ay), so that U would resemble
the underside of an internal jet [cf., Eq. (11)]. The
quantity Ay was estimated from observations to be
roughly 7°.

Fordms 'km!'<—-AU/Az<5ms ' km ' and
1.5AU/Az < U, < 2.0AU/ Az (the same range used
to construct Figs. 11-14), the solutions were again
found to decay beneath zz. The solutions to (1) also
exhibited the same sensitivity to small changes in U.
In fact, the sensitivity was larger than depicted in Fig.
12. While the largest w(z7) in this figure is roughly
one and a half times the smallest value, this ratio was
found to be a full factor of two when (1) was used to
calculate ® and w. By neglecting meridional variations
in the index of refraction, the sensitivity of w to U
appears to be somewhat underestimated.

One feature was unique to the solutions of (1). For
certain values of AU/ Az and U, within the range cited
in the preceding paragraph, the largest values of ascent
occurred not directly under the jet axis, but a few de-
grees of latitude to the north and south. This may be
significant since, despite the idealized jet and moist
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layer depicted in Fig. 1, the moist monsoonal air that
flows onto the West African coast has its northern
boundary near the jet axis. Thus, wave ascent to the
south may be more effective at organizing rainfall than
the same ascent directly beneath the jet.

With this exception, the solutions to (1) generally
reproduce the behavior found by assuming that the
index of refraction varies only with height, although
the sensitivity of ascent to U was found to be somewhat
larger when this assumption was not made.

Our study has implications for the linear stability
calculations applied to the African jet, as described by
Rennick (1976), Simmons (1977), Mass (1979), and
Kwon (1989). Kwon has argued that the energetics of
the unstable waves depend on the assumed zonal wind.
This is consistent with our results, where latent heating
would presumably make a greater contribution to wave
growth if the zonal wind beneath the jet were to allow
the shear instability to converge greater amounts of
moisture.

The earlier stability analyses also considered the
question of whether the shear instability could force a
significant fraction of the African wave ascent, or
whether the large observed value was a consequence
of latent heating associated with organized deep con-
vection. That is, were African waves fundamentally
different in their convergence fields from inviscid
Rossby waves?

Rennick found that the shear instability could force
a majority of the observed ascent, in contrast to the
results of Mass and Simmons.> One possible source of
the discrepancy is the differing numerical resolution
used in each study. Rennick used five vertical levels,
while Mass and Simmons had roughly twice that
amount. We have found that for the 2-km layer de-
picted in Figs. 11-14, 21 points were needed in order
for the solution to converge to within a few percent.
Unfortunately, such resolution would be impractical
in a two-dimensional calculation if the computational
domain extended throughout the entire troposphere.
For comparison, a 2-km layer would be represented
by only 2 or 3 grid points in the models of Mass and
Simmons.

Another possible reason for the discrepancy concerns
the differing zonal-wind profiles used in each study.
Although differences at the level of the jet may be ger-
mane, the discrepancy could also result from differ-
ences in U beneath the jet and the sensitivity of the
wave-induced ascent, as described in this study.

Unfortunately, both of these reasons only point out

3 The ascent published by Rennick is not noticeably different from
the values given by Mass and Simmons. However, each calculation
is linear so that the amplitude depends on how the eigensolution is
scaled. Rennick’s choice of scale is different from that used by Mass,
and if both solutions are scaled consistently, the ascent corresponding
to Rennick’s solution increases significantly.
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the difficulty and uncertainty inherent to such a cal-
culation, without indicating whether the convergence
field of an African wave really is different from that of
a Rossby wave. In any case, we note that the moisture
convergence associated with a shear instability derived
from linear stability analysis will be systematically un-
derestimated in comparison to the convergence of an
African wave observed near equilibration (as in the
case of the GATE observations). This is because, as
described in appendix A, unstable growth results in
exponential decay with respect to height of the wave
amplitude away from the jet. This confinement of the
wave within the jet lessens as the growth rate decreases.
Thus, convergence outside of the jet (e.g., in the moist
layer) will increase relative to the amplitude at jet level
as the initial perturbation grows to observable ampli-
tudes and approaches equilibration.

Finally, we return to the question of whether a wave
source arbitrarily far above the moist layer can organize
rainfall. In the previous section, we found that waves
in the absence of shear could penetrate through deep
layers with undiminished amplitude. However, the as-
cent corresponding to these solutions was small [cf.,
Eq. (10)], and we questioned whether it was sufficient
to organize rainfall. That rainfall remained unorganized
during Phase I despite the penetration, albeit weak, of
the shear instability into the moist layer suggests that
some nonzero value of ascent must be induced and
that the Phase I ascent can provide a lower bound for
the threshold.

Estimation of the Phase I ascent remains a somewhat
uncertain process, since we know neither the precise
form of the zonal wind beneath the African jet nor the
distance separating the unstable wave from the moist
layer. As an alternative, we can construct a plausible
and generous range for these parameters and choose
the smallest corresponding ascent to represent a lower
bound.

The winds at 5°E, where the waves first organize
rainfall, have been analyzed by both Burpee (1972)
and Mass (1979). Both find that the lower critical sur-
face is roughly coincident with the top of the moist
layer near 800 mb. That is, zr ~— z, = 0, according to
the nomenclature of Fig. 1. Both analyses are based
on August wind observations, which are presumably
more representative of Phase III winds than those of
Phase I—especially the analysis of Mass that is based
on the last week in August. During Phase I, zr ~ z,
might be larger, given that the waves were 100 mb
higher over the GATE ship array in comparison to
Phase III (Chen and Ogura 1982). In the interest of
making a conservative estimate, we will take z; — z,
equal to 1500 m and search for the smallest ascent at
this distance from the moist layer.

The overall shear lies within the range 4 m s~ km™"
< —AU/Az<5m s ' km™', while U, is no more than
twice AU/ Az, according to Burpee and Mass. Given
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zr — z,, along with these ranges of AU/Az and U, we
find using either (1) or (3) that the smallest possible
ascent during Phase 1 was near 0.7 mb h™'. This in
turn represents a lower bound for the threshold of as-
cent required for the organization of rainfall, which
remained unorganized during Phase I

This is much larger than the ascent given by (10),
suggesting that a wave source can organize rainfall only
if it is sufficiently close to the moist layer.

5. Conclusions

We have hypothesized that a shear instability can
organize rainfall if it converges sufficient amounts of
moisture, and we have calculated this convergence by
specifying the amplitude of a downgoing wave just be-
neath the jet and calculating the ascent induced below
as a function of the zonal wind.

Our results question whether a jet can organize rain-
fall from an arbitrarily large distance above the moist
layer. While in the absence of shear, a wave can reach
the moist layer with undiminished amplitude, the in-
duced ascent is small—less than the estimated ascent
during Phase I of GATE when rainfall remained un-
organized. For larger values of the shear, this empirical
threshold can be exceeded. However, these solutions
decay beneath the wave source so that large ascent oc-
curs within only a limited distance of the source. For
an optimal combination of shear and curvature, we
found that the induced ascent could exceed the thresh-
old only if the wave source was within at most a few
kilometers of the moist layer.

We have considered whether changes in the African
jet could result in the waves’ increased ability to or-
ganize rainfall during late summer, as observed during
GATE. As a result of the large shear beneath the jet,
the waves decay with respect to height so that the in-
duced ascent increases as the distance separating the
unstable wave from the moist layer decreases. Chen
and Ogura ( 1982 ) show that the waves are roughly 100
mb closer to the moist layer during late summer. Un-
fortunately, their analyses are not entirely applicable
to our model since they are based on observations taken
over the GATE ship array, some 20° of longitude
downstream of where rainfall is first organized. The
African waves analyzed by Chen and Ogura reflect not
only the shear instability that is central to our model
but the circulation forced by latent heating as well, at
least during Phase HII. Nonetheless, their analyses are
consistent with our suggestion that the unstable waves
might be farthest above the moist layer during mid-
summer and, in particular, Phase I, when the surface
thermal contrast responsible for the existence of the
African jet has penetrated to its greatest height within
the troposphere. This hypothesis would be relatively
straightforward to test by the resumption of the wind-
observing network over Central Africa that provided
the data for Burpee’s (1972) study.
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Large changes in ascent can result even if the distance
separating the unstable wave from the moist layer re-
mains unchanged. Similar zonal-wind profiles, each
closely resembling the observed winds, can result in
values of the ascent that vary by up to a factor of 2.
Whether the sensitivity of African wave ascent is as
large as has been computed in this study may be dif-
ficult to assess, given the limited resolution of the wind
observations. The analyses of Sadler (1975) suggest that
late-summer organization of rainfall is a consistent
feature of African waves. That the time of most fre-
guent organization varies little from year to year may
indicate that this sensitivity is not a feature of the ob-
served waves and occurs in our model only due to some
unrealistic simplification. For example, along-stream
variations in the African jet perhaps cause the sensi-
tivity found in our model to be “averaged out.” On
the other hand, this sensitivity may be masked in the
observations by other effects. For example, if the Af-
rican jet is higher during early summer, as we have
hypothesized above, then this would reduce the sen-
sitivity during the early summer that is indicated by
our study, consistent with Sadler’s analyses. In any case,
it remains to be seen how the sensitivity we have found
can result in systematically larger ascent toward late
summer. '

One aspect of our solutions can be verified by ob-
servations, namely, the decay of the ascent and geo-
potential fields with different vertical scales. For ex-
ample, while the ascent associated with profile B in
Fig. 12 fell to one-quarter of its value over 2 km, the
magnitude of the geopotential remained relatively un-
diminished. This is reminiscent of the composite Af-
rican wave during Phase I (Chen and Ogura 1982),
where the wave vorticity decayed only slightly between
the jet and the surface, in contrast to the wave con-
vergence.

Our results have two implications for future studies.
The first is that the curvature of the zonal wind must
be measured accurately in order that the contribution
of the shear instability to the total wave ascent be ac-
curately calculated. We have noted how Rennick
(1976) and Mass (1979) have come to opposite con-
clusions regarding this contribution despite their use
of similar wind profiles (although this discrepancy
might also result from the different vertical resolution
used in each experiment ). The estimation of curvature
is made difficult by the practice of archiving rawinsonde
data in terms of standard and significant levels, where
the significant levels are defined so that the archived
profile represents the actual winds only to within a lin-
ear interpolation.

Second, the calculation of wave amplitude as a
function of time, based on observations at a single level,
may be particularly misleading in the tropics where the
vertical-trapping scale is relatively small. We have cited
Burpee’s (1972) finding that the African wave ampli-
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tude at 700 mb decreases during the midsummer. Due
to the trapped nature of African waves, such a decrease
may result from a wave of undiminished amplitude
that is elevated by as little as 100 mb.

We have specified the downgoing wave amplitude
immediately beneath the jet in order to calculate the
convergence induced below. Since the calculation does
not depend on the identity of the wave source, it also
applies to the convergence within the moist layer forced
by latent heating above this height. This equivalence
may help us to understand why a threshold of conver-
gence must be exceeded in order for an African wave
to organize rainfall. The zonal-wind profile that limited
the convergence induced by a shear instability during
Phase I of GATE would also limit the convergence
forced by latent heating. Perhaps the convergence re-
sulting from the combination of the unstable jet and
latent heating was insufficient to reinforce the heating
during Phase I so that wave growth continued due to
shear instability alone. :
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APPENDIX A

An Unstable Wave as the Sum of Neutral
Wave Packets

In a slowly varying region, an unstable normal-mode
solution to (3) is made up of two terms:

P = eik(x—cl) sinlye*‘””

— ekciteik(x—c,t) Sinlyeiimz’
where m is a slowly varying function of height, and m,
k, and c are related by the dispersion relation,

m = m(k, c).

For the Rossby waves considered in this study, the dis-
persion relation is the equation defining the index of
refraction:

(4)

.

1
== — k=)~ .
fAP\U-~c¢ ! ) 4H3
Expand m in a Taylor series about ¢ = ¢;:

m=m(k,c,)+§(.§:’j’l(c—Cr)+

Use
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where ¢, . = dw/dm is the vertical component of group
velocity. Then

m = m(k, ¢,) + (—k-)ci
Csz

so that
= ekc,'(t—z/cg,z)eik(x—-c,t) sinlye:im(k,c,)z

= A(zf)eik(x—c,t) Sinlyei-im(k,c,)z, ( 12)
where 4 = e*" and t' =t — z/c,...

Equation (12) can be interpreted as the response to
a wave source with forcing amplitude 4, which in-
creases exponentially with respect to time. Following
an individual wave packet (defined by " = 1y, where
to is a constant corresponding to the time the packet
leaves the wave source), 4 is constant. Thus, changes
in the packet amplitude result only from variations of
m in the factor e*™ (%2 These variations are given
by (4) so that m will change asa result of shear. For
example, as U — ¢, becomes large, 7* becomes negative
(i.e., m becomes imaginary) so that e*™%)% corre-
sponds to a trapped exponential. In any case, since
m(k, ¢,) for an individual packet is evaluated from (4)
with ¢; set equal to zero, the packet behaves neutrally,
even if it is part of an unstable normal mode.

Equation (12) can also be derived by evaluating m
from (4), assuming that the quantity ¢;/(U — ¢,) is
small. To summarize, (12) demonstrates that away
from the critical surface {where ¢; /(U — ¢,) is not small ]
unstable normal modes are comprised of neutral waves.

At any instant in time, wave packets closest to the
region of instability have originated most recently and
are associated with larger values of 73. These packets
begin with larger amplitudes than remote packets that
originated earlier. Thus, the growing mode—which is
the sum of all wave packets—decays away from the
region of instability. This decay is in addition to any
trapping associated with the individual wave packets—
which results from the e"{*) factor. This confinement

Jet Ceme«

lower extent of
critical surface

Over -Reflected Wave

FIG. 15. A schematic view of overreflection from thé lower part
of the critical surface. The transmitted wave propagates into the
computational domain at z;.
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of the normal-mode amplitude to the region of insta-
bility is largest for large growth rates, where the differ-
ence in initial amplitude between successively forced
wave packets is greatest.

Strictly speaking, the identification of unstable nor-
mal modes with neutral wave packets depends on the
assumption of a slowly varying medium, which is not
always formally satisfied. Nonetheless, Lindzen and
Rosenthal (1981) and Joannou and Lindzen (1986)
have found that solutions to the Charney problem can
be quite accurately approximated by a packet model
based on vertically propagating waves, even for cases
where WKB is not formally valid.

APPENDIX B
Observational Evidence that g, > 0 beneath z,,

The purpose of this appendix is to argue that g, is
positive beneath z,, (cf. Fig. 1), the lower extent of the
critical surface.

The observational evidence is indirect: Burpee
(1972) and Reed et al. (1988) show that v’T" is neg-
ative near z,. That is, there is a down-gradient heat
flux just above the critical surface. Using an argument
similar to that in Lindzen and Tung (1978), we note
that a down-gradient heat flux is equivalent to over-
reflection of waves incident on the critical level from
the center of the jet [cf. Lindzen and Tung’s Eq. (6)].
This situation is depicted in Fig. 15.

Overreflection at z,, requires a “trapping” region,
where the index of refraction is negative, immediately
above z,. Since U — ¢ is negative above z., g, must
be positive. Thus, g, is positive immediately above the
critical surface. However, we do not expect g, to pass
through zero at z.; hence, g, is presumably positive
for some distance below z,,.

There is additional evidence that g, is positive be-
neath the lower extent of the critical surface. Reed et
al. (1977) show that U,; is negative beneath 800 mb,
which corresponds to z., during Phase III of GATE. In
this region, the horizontal curvature Uy, is the only
term contributing negatively to c}'y But Reed et al.
(1977) calculate that 8 — Uyy is positive below 800 mb.
This shows that g, is positive below 800 mb since U,,y
is not sufficiently large.

Admittedly, the last argument involves estimating
second derivatives of U, which is an uncertain com-
putation. In contrast, the down-gradient heat flux
measured by Burpee (1972) and Reed et al. (1988) is
unambiguous, demonstrating indirectly that g, is pos-
itive in the vicinity of z, and presumably for some
distance below as well.
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